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results on the attenuation and
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1. Introduction
Gas-particles interactions in two-phase mixtures have been widely investigated
during the last decade both from analytical and numerical points of view. This
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Nomenclature
Each variable

–
X is written as the sum of a mean Xo

value and a fluctuation term X.
Ai = maxima of the signal
c = speed of sound in two-phase medium
c0 = speed of sound in the gas
Cd = drag coefficient
Cm = mass concentration
Cp = specific heat of gas at constant pressure
Cv = specific heat of gas at constant volume
Dp = particle diameter
f0 = frequency
n = particles number per unit volume 
P = gas pressure
Pr = Prandtl number
Qp = heat transferred to one particle
R = gas constant
Re = Reynolds number
t = time
T = temperature
Ts = temporal period
F = flux termu
Fp = drag force
H = source term
K = complex wave propagation number
k1, k2 = real and imaginary parts of the number K
m′ = mass of one particle

u = axial velocity
U = conservative term
ω = circular acoustic frequency
x = duct abscissa
Z = velocities ratio

Greek symbols
αp = volume concentration of particles
α = coefficient of energy attenuation
α~ = dimensionless attenuation
β = dispersion coefficient
β~ = dimensionless dispersion
∆1 = distance between two maxim
∆P = amplitude of pressure
ε = total energy
γ = ratio of specific heats of the gas
λ = thermal conductivity of gas
µ = gas viscosity
ρ = density
τd = dynamic relaxation time of particle
τt = thermal relaxation time of particle
Φ = phase lag of the particles and gas

velocities ratio
Subscripts

diph = two-phase flow
0 = mean value
p = particles
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gratefully acknowledged.
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work comes within the frame of the study of the disturbances caused by
particles in an acoustic field[1,2].

Analytical solutions based on the linearization of the basic governing
equations of two-phase flows have been proposed by Temkin and Dobbins[3] in
a quite general scope. Such an approach makes it possible to obtain the actual
values of sound velocity, the modulus and the phase lag of the velocities ratio
up/u.

Quite a similar approach was developed by Culick[4] in studies concerning
the instability phenomena occurring in rocket engines. In such flows excitation
phenomena can occur, like those produced by the “combustion-flow” coupling
effects or associated with the geometry of the combustion chamber[5]. The
limited performance of these theoretical studies required numerical modelling.
Several classes of methods have been used: finite volumes schemes (Roe), and
finite differences methods (Mac-Cormack).

The aim of this study is to verify, in a simple configuration (1D), whether
centred schemes are able to compute acoustic phenomena correctly in two-
phase flows or not, in order to extend computations to multidimensional flows.
Basic equations are linearized around a mean velocity u0. Numerical and
analytical results are compared. The numerical scheme retained is the Mac-
Cormack one in its finite volume formulation.

2. Mathematical model
2.1 Basic equations
In order to simulate unsteady two-phase dilute flows the “two fluids” model is
generally used. Each phase is treated as a continuum medium; dynamics is
described by an Eulerian approach. The basic equations governing such a
problem are deduced from balance equations (mass, momentum, energy).

The main assumptions are:

• The gas phase is compressible and obeys the ideal gas law.

• The gas is inviscid (except the gas-particle interface).

• Particles are spherical and have a uniform temperature.

• The dispersed phase is very dilute: the volume forces of this phase can be
neglected[6,7].

• As a consequence, the set of governing equations of the dispersed phase
is weakly coupled with the gas one by source terms only.

• Interactions between gas and particles occur only by the way of drag
forces and heat transfers.

• Any break up, coalescence of droplets and interactions (e.g. droplet-
droplet, droplet-wall) are ignored.

ρ–p is the particle apparent density. The global set of equations in a conservative
form can be written as follows:
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Gas phase:

Dispersed phase:

(1)

where Fp is the drag force, and Qp is the heat transfer. These terms are evaluated
from usual correlations.

2.2 Transfer terms expression
For one particle, the drag force in the numerical simulation is taken as:

(2)

and the drag coefficient is issued from the relation:

(3)

where:

(4)
is the particulate Reynolds number.

The heat transfer is given by:

(5)

where τt is the thermal relaxation time.
The Stokes relation gives the expression of the drag force for one spherical

particle at constant velocity for low Reynolds numbers. As soon as a particle is
subjected to a perturbation, other forces resulting from the fluid motion must be
added to the Stokes term. These forces are the pressure gradient force, the
apparent mass force and the Basset force. As the densities ratio of gas and
particles is less than unity, all these forces can be neglected in comparison with
the Stokes term[8]. Furthermore, the forces acting crosswise on a particle, such
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as the Magnus force or the shearing force, can also be neglected in front of the
Stokes force as long as the diameter of particle remains small.

In the present case equations (2) and (5) become respectively:

These expressions are valid for Stokes velocity.

3. Theoretical method
3.1 Linear equations: general case
Analysis is based on the linearization of the set of one dimensional equations
issued from the moving media acoustic theory. The main assumptions retained
for this study are the following: 

• Pressure, density, temperature and velocity disturbances due to the
acoustic wave are small compared to their mean values, and the square
or cross product of the disturbance are neglected in front of the first
order terms.

• The work of the friction forces is neglected in the energy balance
equation.

Consider a one dimensional duct, in which an acoustic wave propagates
through a two-phase flow. Gas and particles dynamic equations (1) turn into the
following form:

Gas phase:

(6)

Dispersed phase:

(7)
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Starting from an initial state, where both phases are in equilibrium, supposing
that flow is average and temperature is uniform, linearized equations for small
disturbances of the variable X

–
are found. Each variable X

–
is written as the sum

of a mean value X0 and a fluctuation term X. One can deduce, for the gas phase:

(8)

and for the dispersed phase, with m′ = ρp0/n0

(9)

The ideal gas law can be expressed as:

(10)

Assuming that T, ρ, u and ρp are functions of the term ei(Kx–ωt), the linearized
problem can be solved.

The momentum equation for particles leads to:

Using results of the velocity derivatives and introducing the drag force
expression, the particle velocity is then given by the relation: 

(11)

with 

(12)

Using the heat transfer between phases relation, one can find the particle
energy balance equation in such a form: 



Analytical and
numerical

results

727

(13)

with 

(14)

From equations (11) and (13) it follows that: 

(15)

(16)

Thus the set of equations can be written as: 

(17)

By elimination of the pressure in the gas momentum equation and using the
drag force expression, the momentum equation is obtained in the next form: 

(18)

with 

In the same way, elimination of the pressure in the gas energy equation leads to:

and, substituting the expression for heat transfer expression one can derive:

(19)

Then, the particle mass equation, introducing the relation (15), becomes:

(20)

This new set of equations (17-20) may have a solution for (T, ρ, u, ρp) if the
following determinant is equal to zero: 
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with: Ω = – ω + K u0 and K = k1 + i k2
At this moment, the resolution of such a determinant is done, in the general

case, by a numerical procedure. Indeed, owing to the complex number “– w + K
u0”, involving the initial velocity, development of the determinant yields a
fourth degree complex polynomial. The solution of such an equation in order to
obtain analytical expression of the real and imaginary part[3] is not obvious
and requires a numerical treatment and some constraints. The selection criteria
required for the solution are: 

• both real (k1) and imaginary (k2) parts of the complex wave number must
be positive (see relations 26 and 27).

• the modulus of the complex wave number must be close to:

(21)

It is supposed that these criteria are sufficient to choose the appropriate
solution.

3.2 Particular case: u0 = 0
This case is interesting because of its analytical solution previously found by
Temkin and Dobbins[3]. The solution is obtained by putting u0 = 0 (or Ω = – ω)
into the previous determinant. The calculation of the determinant in that case
leads to the following relation: 

(22)

In order to compute k1 and k2, one sets:

(23)

(24)

It becomes easy to deduce f(ω) and g(ω) from the real and imaginary parts of
equation (22).

Then, solving a biquadratic equation one finds:
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(25)

3.3 Attenuation, dispersion and velocities ratio
The attenuation and dispersion coefficients and velocities ratio are defined from
k1 and k2 as indicated below: 

(26)

(27)

Numerically, these two values are obtained from the observed signal processing. 
Determination of the attenuation. The method consists in determination of a

decreasing exponential function in a e–k2x form going through all the maxima
Ai. k2 is the attenuation of the signal, and it is given by:

Determination of the dispersion. Dispersion is related to the jump of the
pressure wave velocity when it propagates through the gas or the two-phase
medium. The method consists of determination of the wavelength of the signal.
Then, the wave celerity in the two-phase medium is deduced from:

The dimensionless attenuation and dispersion are defined by:

(28)

(29)

If the flow is at rest (u0 = 0) one can notice that the expressions ~α and 
~β are the

same ones given by Temkin and Dobbins[3]. In the other cases (u0 ≠ 0) this
formula is suitable the propagation and the convection of the signal.

For a uniform concentration and a flow velocity given the pressure
oscillations attenuation and dispersion due to the presence of particles depend
on ω τd only.

Determination of the velocities ratio. From relation (15), the modulus and the
phase lag of the complex number Z = up/u are found equal to: 
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(30)

(31)

When the velocity of the flow is equal to zero, these two quantities become: 

(32)

(33)

The modulus of Z is, for a maximum selected, the ratio of the corresponding
velocities. The phase lag is deduced, as soon as the distance Dl between two
consecutive maxima has been measured, from the relation: 

4. Numerical method
The numerical scheme is based on the Mac-Cormack explicit finite volume
scheme. This scheme has the second order accuracy in time and space. It is well
known[9-12], that this scheme in its finite difference form is appropriate for
such computations.

For a given equation Ut + Fx = H, the two steps are: 

Predictor:

Corrector:

where F+ represents the flux term approximated by a forward difference, and F–

by a backward one, 1
→

j being the positive or negative outward normal vector of
cell j.

Owing to the explicit nature of this scheme, CFL stability criterion must be
satisfied. The integration time step is chosen equal to 0.95 CFL. Numerical
experiments have shown that the mesh needs 20 grid points per wavelength to
an accurate solution.
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5. Results
Attention has been focused on the case of an acoustic wave propagating
through a one-dimensional, unsteady two-phase (gas-particles) flow in a duct.
To simulate the acoustic signal, a periodic pressure oscillation is imposed at the
inlet. The inlet pressure time dependence is given by P = P0 + ∆P cos (ω t). The
two-phase medium is at rest or have an equilibrium velocity u0 = up0 in the duct.
The duct is long enough to contain ten signal wavelengths, which is sufficient
to assess the attenuation and the dispersion coefficients.

The common mean values retained for the next calculations are given in
Table I.

The main interest of this topic is to show the influence of the flow velocity on the
sound wave propagation. The theoretical results for the main pressure signal
characteristics (attenuation, dispersion) are confronted with those obtained by
the solution of the system of equations (6, 7). It was pointed out in the previous
section that only the case without initial velocity (u0 = 0 m/s) has an analytical
solution. For a moving initial mixture, the solution for the signal is given by a
fourth order complex polynomial equation. To obtain it, a numerical treatment
is needed with some restrictions. Then, it is important to verify whether or not
the finite volume method results are in good agreement with the analytical ones.
Thus the finite volume method can be a good way to investigate the behaviour
of an acoustic wave.

5.1 Two-phase medium at rest (u0 = 0).
Some previous works[1] have already pointed out that particles motion are
governed by gas motion, as ω τdtends towards zero. On the other hand, as ω τd
exceeds over unit, inertial effects are no longer negligible. In the range 0 ≤ ω τd
≈ 1 Stokes law can be used for the drag force. Moreover, to fall in the scope of
the acoustics theory and to put back in the range where Stokes’ assumptions are
valid, the amplitude ratio of the pressure signal must be close to 0.1 per cent[13].
ω τd appears to be the most significant characteristic of the two-phase medium.

Gas Particles

P0 = 50 bars ρA1 = 1,766kgm–3

T0 = 3,500 K Cpp = 0.68 Cp
γ = 1.23 Cm = 0.396
Cp = 2021.8 J kg–1 K–1 Tp0 3,500 K
µ = 8.855 10–5kg m–1 s–1 Dp = [2-40µm]
Pr = 0.8
c0 = 1275.75m s–1 Pressure signal
R̂ = 378.06 J kg–1 K–1 ∆P/P0 = 1 or 0.1%

ω = 1,000 Hz

Table I.
Mean values of

two-phase medium and
the pressure signal
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Hereafter this parameter varies from 0 to 12. It corresponds to the 0-40µm range
for the diameter. Owing to the fact that particles are small in comparison to the
acoustic boundary layer thickness, Stokes law may be applied even for
unsteady flows. 

From Figure 1 (a, b, c, d), one can notice that there is a good agreement 
except for limiting values of ω τd (ωτd >> 1 or ωτd << 1). That last point can 
be explained by a lack of accuracy in the determination of the wavelength
value.

5.2 Case of a two-phase flow (u0 ≠ 0)
In this part numerical investigations of various two-phase flow are achieved.
The mean velocity is equal to 0, 40 or 600m/s with a view to magnifying its
influence.

One must remark that for low values of ω τd (i.e. for very small particle
diameters) the dynamic relaxation time is close to zero, therefore the particle
fluctuations follow the gas fluctuations. In such a case, the drag force and the
heat transfer do not disturb the pressure signal. As ω τd increases inertia
phenomena can be no longer neglected. That explains the bell shaped curves for
attenuation (Figure 2a). The changes occurring in the neighbourhood of ω τd =
1 underscore the importance of particles in such phenomena as instabilities in
engines[10].

Moreover, it is interesting to examine the values of the ratio of a pressure
wave celerity and the mean particle velocity in the three cases shown in Table II.

In the first case (u0 = 0m s–1) the influence of wave celerity is much more
important than particle velocity, consequently the attenuation of the signal is
greater. In the case of a flow with a 600m s–1 velocity, wave celerity is of the
same order of magnitude as particle velocity, and particles have a lower
influence. In the limiting case where the wave celerity and the particle velocity
would be the same, one expects no attenuation at all. As the flow velocity
increases from 40 to 600m s–1, attenuation is diminishing by 31 per cent (see
Figure 2a).

Otherwise, as illustrated in Figure 2a, the greater the flow velocity, the
greater the value of ω τd for which a maximum attenuation occurs. As 
an example, for a flow velocity of 600m s–1, the maximum attenuation is
achieved for ω τd equal to 1.7 (that means for particle of 18µm diameter),
whereas ω τd is equal to unit for a medium at rest (that means for particle of
12µm diameter).

From Figure 2b, it can be noticed that as ω τd tends to infinity (high particle
diameters), the dimensionless dispersion tends toward zero: particles no longer
respond to gas velocity and temperature fluctuations, the sound celerity is no
longer modified[14] and remains close to the gas phase value. This is confirmed
by the relation (29). Conversely, when ω τd tends to zero, as indicated previously,
particle fluctuations follow the gas fluctuations and therefore the suspension
behaves like a gas where sound celerity could be defined as[14]:



Analytical and
numerical

results

733

Figure 1.
Evolution of (a) the

dimensionless
attenuation; (b) the

dimensionless
dispersion; (c) the

modulus; (d) the phase
lag of up/u versus ω τd

for a frequency of 1,000
Hz and for a medium at

rest
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Figure 2.
Influence of the flow
velocity on the evolution
of (a) the dimensionless
attenuation; (b) the
dimensionless
dispersion; (c) the
modulus; (d) the phase
lag of up/u versus ω τd

Key
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(34)

From (29) and taking into account (34) it becomes:

(35)

Table III shows the good agreement between analytical (35) and numerical
(Figure 2a) dimensionless dispersion for an equilibrium suspension.

In Figure 2c (respectively 2d), it is shown that the higher the velocity is, the
higher (respectively the lower) the modulus (respectively the phase lag) of the
velocities ratio up/u is. In order to verify the adequacy of the behaviour of the
Mac-Cormack numerical scheme when the medium is no longer at rest,
numerical results from two-phase flow computations are confronted to the
linearized theory results in the cases of both flow velocities 40m s–1 and
600m s–1 (see Figure 2).

Finally a very good agreement is achieved. This comparison confirms the
high capability of the numerical procedure to simulate correctly an acoustic
wave propagation through a two-phase flow.

6. Conclusions
Based on the study of pressure wave attenuation in a two-phase flow, the good
capability of computational method to reproduce accurate results has been
proved. From linearized theory one can obtain solutions for the pressure wave
attenuation and dispersion, as well as for the modulus and the phase lag of the
velocities ratio, versus frequency and particle diameter, assuming an uniform
particles concentration. The good agreement between results derived from both

Flow velocity u0 = 0m s–1 u0 = 40m s–1 u0 = 600m s–1

(u0 + c0)/up0 Infinity 32.87 3.125

Table II.
Flow velocity effect on

the ratio (u0 + c0)/up0

Flow velocity (m s–1) Theoretical value Relation (35)

0 1.172 1.207
40 1.114 1.125

600 0.718 0.721

Table III.
Theoretical and

numerical dimensionless
dispersion values for

various flow velocities
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theory and numerical computations means that it is possible to expect valid
numerical extensions to more complex configurations.
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